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The Technical Annex provides supporting material on methodologies and
results to supplement the main body of the Report. In particular, it provides
background on the statistical work undertaken in the development of the
Disaster Risk Index (DRI).

This is a detailed account of the work that was carried out in the DRI,
the challenges that require further attention and the potential that exists
for further work.

T.1 Definition of Statistical Terms 

In the Glossary, we have included a set of key terms which are referred to
throughout the Report. In order to aid comparability, in most cases we
stay close to those used in the ISDR Secretariat publication Living in Risk.
At the same time, the development of the DRI required the adoption of
specific working definitions that guided the statistical analysis undertaken.

In this section, we present an extract of terms from the Glossary followed
by the specific working definition of the term used in the development of
the DRI.

Natural Hazard: Natural processes or phenomena occurring in the 
biosphere that may constitute a damaging event. Hazardous events vary
in magnitude, frequency, duration, area of extent, speed of onset, spatial
dispersion and temporal spacing.1

In the DRI: Natural hazards refer exclusively to earthquake, tropical
cyclone, flood and drought. Only frequencies and area of extent were 
considered in the model. Magnitude is taken into account indirectly when
possible. Secondary hazards triggered by the primary hazards mentioned
above (for example, landslides triggered by earthquakes) are subsumed in
the primary hazard.
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Physical Exposure:Elements at risk, an inventory of those
people or artefacts that are exposed to the hazard.2

In the DRI: Physical exposure refers to the number
of people located in areas where hazardous events
occur combined with the frequency of hazard events.

Human Vulnerability: A human condition or process
resulting from physical, social, economic and environmental
factors, which determine the likelihood and scale of
damage from the impact of a given hazard.

In the DRI: Human vulnerability refers to the 

different variables that make people more or less able
to absorb the impact and recover from a hazard event.
The way vulnerability is used in the DRI means that it
also includes anthropogenic variables that may increase
the severity, frequency, extension and unpredictability
of a hazard.

Natural Disaster: A serious disruption triggered by a
natural hazard causing human, material, economic or
environmental losses, which exceed the ability of those
affected to cope.

In the DRI: Disasters are a function of physical
exposure and vulnerability.

Risk: The probability of harmful consequences or
expected loss (of lives, people injured, property,
livelihoods, economic activity disrupted or environment
damaged) resulting from interactions between natural
or human-induced hazards and vulnerable conditions.
Risk is conventionally expressed by the equation 
Risk = Hazard + Vulnerability.

In the DRI: Risk refers exclusively to loss of life
and is considered as a function of physical exposure
and vulnerability.

T.2 Sourcing Data

T.2.1 EM-DAT Database
The DRI exercise is calibrated against the mortality
data in the EM-DAT global disaster database. It is
important to be clear about the data collection and
management methods employed by EM-DAT.

The Centre for Research on the Epidemiology of
Disasters (CRED) maintains the EM-DAT database
at the University of Louvain in Belgium. Events that
conform to a consistent definition of a disaster are
included in the database. Such events meet at least one
of the following criteria: 10 or more people reported killed;
100 people reported affected; a call for international
assistance; and/or a declaration of a state of emergency.
Information on losses comes from secondary sources
(government reports, the International Federation of
the Red Cross and Red Crescent Societies (IFRC)
and other disaster relief agencies, Reuters, reinsurance
company assessments) and is cross-checked where
possible. These criteria exclude smaller loss events
which are not considered disasters.
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FIGURE T.1 FLOW CHART OF THE GLOBAL RISK AND
VULNERABILITY TREND PER YEAR (GRAVITY) PROJECT
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One important quality of EM-DAT is its management
by an independent academic institution that encourages
public access and scrutiny of the dataset. Great care is
taken to verify disaster reports and emphasis is placed
on the higher confidence that can be placed on the
accuracy of deaths over those injured, made homeless
or affected by disaster, although information is also
made available for these categories.

Two other global disaster databases are maintained by
the Munich Re Group and Swiss Reinsurance Company,
but are not publicly available. A study by CRED
(commissioned by the ProVention Consortium3) carried
out a comparison of EM-DAT, Swiss Re and Munich Re
natural disasters databases for four countries (Honduras,
Mozambique, India and Viet Nam) between 1985 and
1999. Although the report stated that all three databases
furnish the world community with ‘acceptable levels of
data on disasters’,4 it discovered significant variations
among these datasets in both the events recorded and
losses reported.

These differences were explained by differences in
recording practice: what date each event is given,
differences in classificatory methodology for each
hazard type (a problem if one hazard triggers another)
and the multiple entry of a single disaster event. As a
result, the study found considerable differences
between the datasets in the number of people affected
(66 percent) and to a lesser extent the number of
deaths (37 percent) and physical damage (35 percent).
This is not surprising, since the definition of people
affected varies enormously from disaster to disaster
and from reporting source to reporting source. It is the
most difficult impact variable to quantify and for this
reason has not been used in the DRI work. The report
also showed that the differences between the databases
reduced significantly with time.This reflects EM-DAT’s
practice of reviewing its databases to incorporate updated
information as it becomes available, even years after an
event. A main weakness with global disaster data is the
lack of standardised methodologies and definitions. This
weakness is being addressed through the development
of a unique global identifier for disaster reporting, the
GLIDE system discussed in Chapter 2.

As mentioned above, EM-DAT explicitly excludes events
where the loss is below defined threshold levels.
A study undertaken on behalf of the ISDR Working
Group 3 on Risk, Vulnerability and Impact Assessment,

compared national disaster databases developed using
the DesInventar methodology with the EM-DAT
databases in four countries (Colombia, Chile, Panama
and Jamaica). In all four countries, small-scale disasters
with losses below the EM-DAT threshold represented
a variable proportion of total disaster loss. Additionally,
the national databases contained data on a number of
medium-scale disasters that were above the EM-DAT
threshold, but which were not captured by international
reporting. It is impossible to arrive at a firm conclusion
from a four-country study regarding what percentage
of total disaster loss is not captured by international
reporting, and in any case this will vary from country
to country. Again, the adoption of a unique identifier
such as GLIDE in both national and global databases like
EM-DAT should progressively improve the consistency
of disaster reporting.

Given that the DRI is calibrated against mortality data
from EM-DAT, under- or over-reporting of this variable
in EM-DAT would affect the DRI results. However,
the DRI takes into account the varied reporting for
individual disasters by basing its analysis on average
losses over a 20-year period (1980-2000).The EM-DAT
database provides a very good sample of total disaster
loss in this period with a national level of resolution.

This period provides a reasonable length of time to
account for fluctuation in the occurrence of most 
hazard types and also coincides with the most reliable
period of data collected in EM-DAT. Figure T.2 shows
the total number of disasters recorded by EM-DAT
from 1900 to 2000. The upward trend at first suggests
an exponential increase in disaster frequency. However,
improvement in disaster reporting is a substantial 
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Source: EM-DAT: The OFDA/CRED International Disaster Database 
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contributing factor.5 While one cannot rule out that
the number of hydrometeorological hazard events may
have increased, the upward trend in reported disasters
is more likely to be tied to improvements in telecom-
munication technology and the increasingly global
coverage of different information networks. This
makes the reporting and recording of disaster losses
more possible today than in the past.

T.2.2 Choice of hazard types
The decision to limit the DRI to earthquake, tropical
cyclone, flood and drought was based on two factors.
First, the dominance of these hazard types in being
associated with lives lost to disaster in past records
(94.43 percent). Secondly, the availability of usable
geophysical and hydrometeorological data to model
each hazard’s comparative extent and potential severity
of impact. Data had to be available at the global level
but detailed enough to map risk within each country.

During a preliminary investigation, volcanic eruptions
were also considered. They were finally excluded
because of the complexity of modelling the spatial
extent of volcanic hazard events. Other types of 
hazards that may lead to disasters and influence the
process of human development, such as technological
and biological hazards, are not covered by the DRI,
nor are natural hazards with more prominence at the
local scale such as landslides. These could be included
in the future when global datasets of events with
national resolution come into use.

T.2.3 Choice of country cases
The DRI exercise aims to include all sovereign states
in its analysis. This is compromised in two ways. First,
there are varying levels of data availability. The 
decision here was to include all states from the outset,
but discount those with inadequate data from detailed
analysis. This partly accounts for the uneven number
of states entered into the hazard-specific analyses.
Secondly, a number of territories are classified as
dependent territories or overseas departments. Such
dependencies are often small islands or enclaves 
geographically distant from, but politically and
administratively tied to, sovereign states such as
France, the United Kingdom, USA or China.
Overseas territories and sovereign states often exhibit
very different socio-economic and environmental

characteristics and hazard profiles. Where possible
such territories have been analysed in their own right.

T.2.4 Outline formula and method 
for estimating risk and vulnerability
The formula used for modelling risk combines its three
components. Risk is a function of hazard occurrence
probability, the element at risk (population) and 
vulnerability. The equation below was made for 
modelling disaster risk.

0 (hazard) x population x vulnerability = 0 (risk)

The three factors used to construct this statistical
explanation of risk were multiplied with each other.
This meant that if the hazard was null, then the risk
was null. The risk was also null if nobody lived in an
area exposed to hazard (population = 0). The same 
situation held if the population was invulnerable 
(vulnerability = 0, induce a risk = 0).

From this, a simplified equation of riska was constructed:

Hazard multiplied by the population was used to 
calculate physical exposure.

Physical exposure was obtained by modelling the area
affected by each recorded event. Event frequency was
computed by counting the number of events for the
given area, divided by the number of years of observation
(in order to achieve an average frequency per year).
Using the area affected, the number of people in the
exposed population was extracted using a Geographical
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––––––––––––––––––––––––
a. The model uses a logarithmic regression, the equation is similar but with exponent to each of the parameters.

EQ1 R = H • Pop • Vul

Where 
R is the risk  (number of killed people. 
H is the hazard, which depends on the frequency and strength

of a given hazard
Pop is the population living in a given exposed area
Vul is the vulnerability and depends on the socio-politial-

economical context of this population

EQUATION 1 RISK

EQ2 R = PhExp • Vul
Where 
PhExp is the physical exposure, i.e. the frequency and severity

multiplied by exposed population

EQUATION 2 RISK EVALUATION USING PHYSICAL EXPOSURE



Information System (GIS). The population affected
multiplied by the frequency of a hazard event for a specified
magnitude provided the measure for physical exposure.

Socio-economic variables that could be statistically 
associated with risk were identified by replacing the
risk in the equation with deaths reported in EM-DAT.
A statistical analysis was then run to identify links
between socio-economic and environmental variables,
physical exposure and observed deaths.

The magnitude of events was taken into account by
drawing a threshold above which an event is included.
In the case of earthquakes, the threshold was placed at
5.5 on the Richter scale. Then the magnitude was 
partially taken into account by approaching the size of
the area affected in relation to the magnitude, for the
computation of physical exposure. Estimating event
magnitude for use in global assessments is an area
where there is great scope for improvement.

Scores for aggregated hazard deaths were calculated at
the national level. Expected losses due to natural 
hazards were equal to the sum of all types of risk faced
by a population in a given area. This is summarised 
in Equation 3 above.

The multi-hazard risk for a country required calculating
an estimate of the probability of the occurrence and
severity of each hazard, the number of persons 
affected by it, and the identification of the population’s
vulnerability and coping capacities. This is very 
ambitious and not achievable with present data 
constraints. However the aim is to provide an
approach built on existing data that will be refined in
subsequent runs of the DRI.

T.3 Choice of Indicators

T.3.1 Spatial and temporal scales
The DRI exercise was performed on a country-by-country
basis for the 249 countries defined in the GEO reports.6

The socio-economic variables used in the analysis of
risk needed to be available to cover the 21-year period
under analysis. This period was from 1980 to 2000.
The starting date was set at 1980 because access to
information (especially on victims) was not considered
reliable or comparable before this year. The variables
introduced in Equation 2 were aggregate figures (sum
or average) of the available data for that period, with
the following major exceptions:
■ Earthquake frequencies were calculated over a 36-

year period, due to the longer return period of this
type of disaster. The starting date for the first global
coverage on earthquakes measurement is 1964.

■ Cyclones frequencies were based on annual 
probabilities provided by the Carbon Dioxide
Information Analysis Center (CDIAC).7

■ HDI was available for the following years: 1980,
1985, 1990, 1995 and 2000. However, algorithms
were applied for computation of every year
between 1980 and 2000.

■ Population by grid cell (for physical exposure 
calculations) was available for 1990 and 1995.

■ The Corruption Perception Index (CPI) was available
for 1995 to 2000.

T.3.2 Risk indicators
Risk can be expressed in different ways (for example
by the number of people killed, percentage killed or
percentage killed as compared to the exposed population).
Each measure has advantages and inconveniences (see
Table T.1 on the following page).

The DRI work used two indicators for each hazard
type: the number of killed and killed per population.
The third indicator is used to indicate relative 
vulnerability. Exposed populations to different 
hazards should not be compared as stated in the
Report without standardisation.

T.3.3 Vulnerability indicators
Table T.2 (see following page) hows those socio-
economic and environmental variables chosen to 
represent eight separate categories of vulnerability.
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––––––––––––––––––––––––
b. In the case of countries marginally affected by a hazard type, the risk was replaced by zero if the model could not be computed for this hazard.

EQ3 RiskTot =∑(RiskFlood + RiskEarthquake + RiskVolcano + RiskCyclone + ...Riskn ) b

EQUATION 3 ESTIMATION OF THE TOTAL RISK
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Advantages

Each human being has the same ‘weight.’

Allows for comparisons between countries. 
Less populated countries have the same weight 
as more populated countries.

Regional risk is highlighted, even though the 
population affected is a smaller portion of the 
total national population.

Inconveniences

10,000 people killed split between 10 small countries
does not appear in the same way as 10,000 killed in
one country. Smaller countries are disadvantaged. 

The ‘weight’ of each human being is not equal, 
e.g. one person killed in Honduras equals 160 killed 
in China.

This may highlight local problems that are not of
national significance and give the wrong priority for 
a selected country.

Indicators for risk

Number of killed

Killed/Population

Killed/Population exposed

TABLE T.1 ADVANTAGES AND DISADVANTAGES OF RESPECTIVE RISK INDICATORS

Indicators

Gross Domestic Product per inhabitant at purchasing power parity

Human Poverty Index (HPI)

Total debt service (% of the exports of goods and services)

Inflation, food prices (annual %)

Unemployment, total (% of total labour force)

Arable land (in thousand hectares) 

% of arable land and permanent crops

% of urban population

% of agriculture’s dependency for GDP

% of labour force in agricultural sector

Forests and woodland (in % of land area)

Human-Induced Soil Degradation (GLASOD)

Population growth

Urban growth

Population density

Age dependency ratio

%  of people with access to improved water supply 
(total, urban, rural)

Number of physicians (per 1,000 inhabitants)

Number of hospital beds

Life expectancy at birth for both sexes

Under-five-years-old mortality rate

Number of radios (per 1,000 inhabitants)

Illiteracy rate

Human Development Index (HDI)

Drought

X

X

X

X

X

XXX

X

X

Flood
Earthquakes

Cyclones

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Sourcec

WB

UNDP

WB

WB

ILO

FAO

FAO

UNPOP

WB

FAO

FAO

FAO/UNEP

UNDESA

GRIDd

GRIDe

WB

WHO/UNICEF

WB

WB

UNDESA

UNDESA

WB

WB

UNDP

Categories of
Vulnerability

Economic

Type of 
economic activities

Dependency and quality 
of the environment

Demography

Health and sanitation

Early warning capacity

Education

Development

TABLE T.2 VULNERABILITY INDICATORS

Source: UNDP/UNEP

––––––––––––––––––––––––
c. FAOSTAT, the database of the Food and Agriculture Organisation (FAO); GRID, the Global Resource Information Database of UNEP; WB, World

Development Indicators of the World Bank; Human Development Report of UNDP; ILO, International Labour Office; UNDESA, the UN Dept. of Economic
and Social Affairs/Population Division. Most of the data were reprocessed by the UNEP Global Environment Outlook Team. Figures are available at
the GEO Data Portal (UNEP), http://geodata.grid.unep.ch

d. Calculated from UN Dept. of Economic and Social Affairs data.
e. Calculated from UNEP/GRID spatial modelling based on CIESIN population data.



The list of factors to be considered for the analysis was
set on the basis of the following criteria:

■ Relevance. Select vulnerability factors (outputs
orientated, resulting from the observed status of
the population) not based on mitigation factors
(inputs, action taken). For example, school enroll-
ment rather than education budget.

■ Data quality and availability. Data should cover
the 1980-2000 period and most of the 249 coun-
tries and territories.

Examples of variables that were rejected for these two
reasons were the percentage of persons affected by
AIDS, the level of corruption and the number of 
hospital beds per inhabitant.

T.3.4 Data sources
Data sources ranged from universities and national
scientific institutions to international data series collected
by international organisations. Table T.3 presents the
data sources used to obtain data on hazards.

Table T.4 presents the data sources used to obtain data
on victims, population and vulnerability variables.

T.4 The Computation of 
Physical Exposure

T.4.1 General description
Two methods are available for calculating physical exposure.
First, by multiplying hazard frequency by the population
living in each exposed area. The frequencies of hazards
were calculated for different strengths of event, and
physical exposure was computed as in Equation 4.
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Data source

Council of the National Seismic System (as of 2002), Earthquake Catalog, http://quake.geo.berkeley.edu/cnss/

Carbon Dioxide Information Analysis Centre (1991), A Global Geographic Information System Data Base of Storm
Occurrences and Other Climatic Phenomena Affecting Coastal Zones, http://cdiac.esd.ornl.gov/

U.S. Geological Survey (1997), HYDRO1k Elevation Derivative Database, http://edcdaac.usgs.gov/gtopo30/hydro/

IRI/Columbia University, National Centres for Environmental Prediction Climate Prediction Centre (as of 2002), CPC
Merged Analysis of Precipitation (CMAP), monthly gridded precipitation, http://iridl.ldeo.columbia.edu/

Hazard type

Earthquakes

Cyclones

Floods

Droughts 
(physical drought)

TABLE T.3 DATA SOURCES FOR HAZARDS

Data source

Université Catholique de Louvain (as of 2002), EM-DAT: The OFDA/CRED International Disaster Database,
http://www.cred.be/ (for droughts, victims of famines were also included on a case by case basis by UNDP/BCPR)

CIESIN, IFPRI, WRI (2000), Gridded Population of the World (GPW), Version 2, http://sedac.ciesin.org/plue/gpw/;
UNEP, CGIAR, NCGIA (1996), Human Population and Administrative Boundaries Database for Asia,
http://www.grid.unep.ch/data/grid/human.php

UNDP (2002), Human Development Indicators, http://www.undp.org/

Transparency International (2001), Global Corruption Report 2001, http://www.transparency.org/

ISRIC, UNEP (1990), Global Assessment of Human-Induced Soil Degradation (GLASOD),
http://www.grid.unep.ch/data/grid/gnv18.php

UNEP/GRID (as of 2002), GEO-3 Data portal, http://geodata.grid.unep.ch/ (data compiled from World Bank, 
World Resources Institute, FAO databases)

Theme

Victims (killed)

Population (counts)

Vulnerability factors

Human Development
Index (HDI)

Corruption Perceptions
Index (CPI)

Soil degradation 
(% of area affected)

Other socio-economic 
variables

TABLE T.4 DATA SOURCES FOR VICTIMS, POPULATION AND VULNERABILITY VARIABLES

EQ PhExpnat = ∑Fi • Popi

Where 
PhExpnat is the physical exposure at national level
Fi is the annual frequency of a specific magnitude event

in one spatial unit
Popi is the total population living in the spatial unit

EQUATION 4 COMPUTATION OF PHYSICAL EXPOSURE



A second method was used when data on the annual
frequency of return of a specific magnitude event was
not available. In this case (earthquake), physical exposure
was computed by dividing the exposed population by
the numbers of years when a particular event had
taken place as shown in Equation 5.

Once the area exposed to a hazard was computed —
using UNEP/GRID-Geneva methods for earthquakes,
floods and cyclones and using a method for drought
from the International Research Institute for Climate
Prediction (IRI) — then the exposed population was
calculated for each exposed area. This number was
then aggregated at the national level to come to a
value for the number of exposed people over the last
21 years for each hazard type.

Depending on the type of hazard and the quality of
data, different methods were applied to estimate the
size of populations exposed to individual hazards.
Population data was taken from CIESIN, IFPRI 
and WRI Gridded Population of the World (GPW,
Version 2) at a resolution of 2.5’f (equivalent to 5 x 5
km at the equator). This was supplemented by the
Human Population and Administrative Boundaries

Database for Asia (UNEP) for Taiwan and CIESIN
Global Population of the World Version 2 (country
level data) for ex-Yugoslavia. These datasets reflect the
estimated population distribution for 1995. Since
population growth is sometimes very high in the
1980-2000 period, a correction factor using country
totals was applied in order to estimate current physical
exposures for each year as follows (see Equation 6).

Due to the resolution of the dataset, the population
could not be extracted for some small islands. This 
has meant some small islands had to be left out of
parts of the analysis. This is a topic for further research
(see recommendations in the Conclusions of the
Technical Annex).

The main challenge lay in the evaluation of areas
exposed to particular hazard frequency and intensity.
At the global scale, data was not complete. Expert
opinion was used to review the process of building
datasets. Of the four hazards studied, only in the case
of floods was it necessary to design a global dataset.
This was constructed by linking CRED information
with USGS watersheds. Drought maps were provided
by IRI. For the other hazards, independent global
datasets had already been updated, compiled or modelled
by UNEP/GRID-Geneva and were used to extract
population. The Mollweide equal-area projection was
used when calculations of areas were needed.

T.4.2 The case of earthquake
A choice was made to produce seismic hazard zones using
the seismic catalogue of the Council of the National
Seismic System. The earthquakes records of the last
21 years (1980-2000) were grouped in five magnitude
classes using a buffer with a radius from the epicentre that
varied according to the magnitude class (see Table T.5).

The values in Table T.5 show estimated ground-motion
duration for specific acceleration and frequency
ranges, according to magnitude and distance from the
epicentre.8 Numbers in bold in Table T.5 show the
duration for a particular acceleration and frequency
range between the first and last acceleration excursions
on the record greater than a given amplitude level (for
example, 0.05 g).9
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EQ5 PhExp = ∑
Popi——
Yn

Where 
Popi is the total population living in a particular buffer, 

the radius of which from the epicentre varies according to
the magnitude 

Yn is the length of time in years
PhExp is the total physical exposure of a country, in other words

the sum of all physical exposure in this country     

EQUATION 5 PHYSICAL EXPOSURE 
CALCULATION WITHOUT FREQUENCY

EQ6 PhExpi = ∑
Popi—–––— • PhExp1995Pop1995

Where 
PhExpi is the physical exposure of the current year
Popi is the population of the country at the current year
Pop1995 is the population of the country in 1995
PhExp1995 is the physical exposure computed with population 

as in 1995

EQUATION 6 COMPUTATION OF CURRENT PHYSICAL EXPOSURE 

––––––––––––––––––––––––
f. GPW2 was preferred to the ONRL Landscan population dataset despite its five times lower spatial resolution (2.5’ against 30”) because the original

information on administrative boundaries and population counts is almost two times more precise (127,093 administrative units against 69,350 units).
Furthermore, the Landscan dataset is the result of a complex model which is not explained thoroughly and which is based, among other variables, on
environmental data (land-cover). That makes it difficult to use for further comparison with environmental factors (circularity).



According to these figures, a specific buffer distance
was defined for each class of magnitude to limit 
the area affected by ground motions: 75 km for
Magnitude ≤ 6.2, 125 km for M = 6.3 – 6.7, 150 km
for M = 6.8 – 7.2, 175 km for M = 7.3 – 7.7, 200 km for
M ≥ 7.8. This approach did not take into account local
conditions, for instance soil or geo-tectonic characteristics.

Assuming the limitations inherent in a mortality-based
conceptual model, there were three key challenges to
calculating the earthquake risk index.

The first and most difficult challenge was the necessity
to use a restricted time-frame for analysis of risk (1980-
2001). Twenty years is a short time-span to analyze
the occurrence of geological phenomena such as
earthquakes, which are low frequency/high impact 

events. For this reason, risks are overestimated by 
the model for some countries and underestimated for
others. Armenia provides an example of a high-impact
single earthquake in a small-sized country (29,000
square kilometres), with a high population density (117
per square kilometre). The earthquake that affected
this former Soviet Republic in 1998 killed 25,000
people, left 514,000 people homeless and prompted
the evacuation of almost 200,000 people. The high losses
recorded in this event appear to exaggerate Armenia’s
long-term calculated risk value, in comparison with
countries known to be at risk but where no event took
place during the time period used to calculate the risk
model. An example of this is the Algerian earthquake in
2003, which is later than the period used in the DRI
exercise. In order to partly overcome such limitation,
frequency was derived using data from 1964-2000 in order
to take advantage of the time-span available globally.

Secondly, in the delimitation of areas at risk from
individual earthquake zones, it was not possible to
consider intervening factors (such as soil types and
geology) in the transmission of earthquake energy. In
explaining the ground motions of earthquakes and
therefore the severity of impact, soil conditions play a
major role. Inclusion of this data would have allowed
for a more accurate delimitation of areas and thus
populations exposed to earthquake risks of various
magnitudes and intensities. While values for peak ground
acceleration were available from the Global Seismic
Hazard Assessment Programme, they did not allow for
the calculation of frequencies. Consequently, the analysis
was based solely on magnitude values that were taken from
the Council of the National Seismic System (CNSS).
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Distance
(km)

10

25

50

75

100

125

150

175

200 

5.5

8

4

2

1

0

0

0

0

0

6.0

12

9

3

1

0

0

0

0

0

6.5

19

15

10

5

1

1

0

0

0

7.0

26

24

22

10

4

2

1

0

0

7.5

31

28

26

14

5

2

2

1

0

8.0

34

30

28

16

6

3

2

2

1

8.5

35

32

29

17

7

3

3

2

2

Magnitude

TABLE T.5 LIMITS OF THE RADIUS FOR EARTHQUAKES HAZARD

Source: [Bolt et al. 1975] Acceleration > 0.05 g = ~ 0,49 m/s2, frequency > 2 Hz

Population Intensity National physical exposure per year

FIGURE T.3 POPULATION, INTENSITY AND PHYSICAL EXPOSURE FOR EARTHQUAKES



A third and more generic challenge for the risk model
was the lack of casualty and death data and a lack of
underlying socio-economic and environmental data
for some countries. This is particularly problematic 
for mapping global earthquake risk because some gaps
in national level data led to the exclusion of some
countries — known to be at particularly high risk
from earthquakes — from the calculation of the 
vulnerability indicators. This was the case for
Afghanistan, Sudan, Tajikistan and Guinea. Future
improvements in statistical records will enhance the
scope of future assessments.

T.4.3 The case of tropical cyclone
The data used to map tropical cyclone hazard areas
were produced by the Carbon Dioxide Information
Analysis Centre.10 The spatial unit is a 5 x 5 decimal
degrees cell. Return probabilities were based on tropical
cyclone activity over a specific record period. Exceptions
were made for several estimated values attributed to areas
that may present occasional activity, but where no tropical
cyclones were observed during the record period.

The Saffir-Simpson tropical cyclones classification is
based on the maximum sustained surface wind.
Systems with winds of less than 17 m/s are called
Tropical Depressions. If the wind reaches speeds of at
least 17 m/s, the system is called a Tropical Storm. If
the wind speed is equal to or greater than 33 m/s, the
system is named, depending on its location:g
Hurricane, Typhoon, Severe Tropical Cyclone, Severe
Cyclonic Storm or Tropical Cyclone. Systems with
winds reaching speeds of 65 m/s or more are called
Super-typhoons.11

The CDIAC provided the probability of occurrence
for these three types of events. The average frequency
(per year) was computed using Equation 7.

To obtain physical exposure, a frequency per year was
derived for each cell. Cells were divided to follow
country borders, then population was extracted and
multiplied by frequency in order to obtain the average
yearly physical exposure for each cell. This physical
exposure was then summed by country for the three
types of cyclones.

Physical exposure to tropical cyclones of each magnitude
was calculated for each country using Equation 5.

There is room for improving the human exposure 
calculation by more accurate delimitation of exposed
population zones for tropical cyclone tracks. Even though
accurate zoning was possible for many tropical cyclone-
prone countries, data on tracks, central pressure and
sustained winds were not available for some heavily
populated and high-risk countries, such as India,
Bangladesh and Pakistan. While these data exist they
were not accessible.

T.4.4 The case of flood
The only global database on floods that was identified
was the Dartmouth Flood Observatory, but this 
database did not cover the time period under study.
Due to the lack of information on the duration and
severity of floods, only one class of intensity was
made. Using the EM-DAT database, a geo-reference
of each recorded flood was produced and the watershed
related to each flood event was identified. Watersheds
affected were mapped for the period 1980-2000. A
frequency was derived for each watershed by dividing
the total number of events by 21 years. The watersheds
were then split to follow country borders. Next, population
was extracted and multiplied by the event frequency.
The average yearly physical exposure was then summed
at a country level using Equation 3.
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Wind speeds

≥ 17 m/s

≥ 33 m/s

≥ 65 m/s

Name of the phenomenon

Tropical storms

Hurricanes, typhoons, tropical cyclones, severe
cyclonic storms (depending on location )

Super-typhoons

TABLE T.6 WIND SPEEDS AND APPELLATIONS

––––––––––––––––––––––––
g. Hurricane: North Atlantic Ocean, Northeast Pacific Ocean east of the dateline, or the South Pacific Ocean east of 160E; Typhoon: Northwest Pacific

Ocean west of the dateline; Severe tropical cyclone: Southwest Pacific Ocean west of 160E and Southeast Indian Ocean east of 90E; Severe cyclonic
storm: North Indian Ocean; Tropical cyclone: Southwest Indian Ocean; Source: NOAA/AOML, FAQ: Hurricanes, Typhoons and Tropical Cyclones,
http://www.aoml.noaa.gov/hrd/tcfaq/tcfaqA.html#A1

EQ7 E(x) = λ = –ln(1 – P(x ≥ 1))

Where 
E(x) is the statistical expectation, i.e. the average number of

events per year = λ
P(x) is the probability of occurrence

EQUATION 7 FROM PROBABILITY TO 
ANNUAL FREQUENCY FOR CYCLONES



Assuming the limitations inherent in a mortality-based
conceptual model there were two key challenges to
measuring flood risk.

First, there remains a need for refining the calculation
of human exposure and vulnerability to floods in 
the formulation of the DRI. The use of watersheds
affected by floods to delimit hazard exaggerates 
the extent of flood-prone areas, subsequently 
exaggerating human exposure and diminishing 
proxies of vulnerability.

Second, in the absence of historical flood event data,
annual probabilities of floods should be based on
hydrological models rather than being inferred from
the flood entries in the EM-DAT database.

T.4.5 The case of drought

Identification of drought
The data used in this analysis consisted of gridded
monthly precipitation data for the globe for the period
1979-2001. This dataset was based on a blend of surface
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Source: Carbon Dioxide Information Analysis Centre: A Global Geographic Information System Database of Storm Occurrences and Other Climactic Phenomena Affecting Coastal Zones; 
CIESIN, IFPRI, WRI: Gridded Population of the World (GPW), Version 2 (population); Compilation and computation by UNEP/GRID-Geneva

FIGURE T.4 AN EXAMPLE OF PHYSICAL EXPOSURE FOR TROPICAL CYCLONES

Physical exposure (people per year)

1 – 100 000

100 000 – 1 000 000

1 000 000 – 5 000 000

5 000 000 – 100 000 000

100 000 000 – 279 404 139

Population Frequency for each watershed National physical exposure per year

FIGURE T.5 POPULATION, FREQUENCY AND PHYSICAL EXPOSURE FOR FLOODS



station observations and precipitation estimates drawn
from satellite observations. The first step in assessing
exposure to meteorological drought was to compute,
for each calendar month, the median precipitation for
all grid points between the latitudes of 60S and 70N
over the base period 1979-2001 (the 23-year period for
which the data was available). Next, for each grid-point,
the percent of the long-term median precipitation was
computed for every month during the period January
1980 to December 2000. For a given month, grid-points
with a long-term median precipitation of less than 0.25
mm/day were excluded from the analysis. Such low
median precipitation amounts can occur either during
the ‘dry season’ at a given location or in desert regions.
In both cases our definition of drought does not apply.

A meteorological drought event was defined as having
occurred when the percent of median precipitation
was at or below a given threshold for at least three
consecutive months. The different thresholds considered
were 50 percent, 75 percent and 90 percent of the long-
term median precipitation, with the lowest percentage
indicative of the most severe drought according to this

method. The total number of events during the period
1980-2000 were thus determined for each grid-point
and the results plotted on global maps.

Computation of physical exposure
Using the IRI/Columbia University dataset, physical
exposure was estimated by multiplying the frequency
of hazard by the population living in an exposed area.
The events were identified using different measurements,
based on severity and duration as described in Table T.7.
For each of the following six definitions, the frequency
was then obtained by dividing the number of events
by 21 years, thus providing an average frequency of
events-per-year.

Physical exposure was computed, as in Equation 5,
for each drought definition. The statistical analysis
selected the best fit. This was achieved with droughts
of three months duration and 50 percent decrease 
in precipitation.

T.5 Statistical analysis:
Methods and results

T.5.1 Defining a multiplicative model
The statistical analysis is based on two major hypotheses.
First, that risk can be understood in terms of the 
number of victims of past hazardous events. Secondly,
that the equation of risk follows a multiplicative
model as in Equation 8.

Using logarithmic properties, the equation was re-
formulated as in Equation 9. This equation creates a
linear relationship between logarithmic sets of values.
This allows significant socio-economic parameters Vi
(with transformations when appropriate) and exponents
αi to be determined using linear regressions.

T.5.2 Detailed process

Data on victims
Numbers of killed were derived from the EM-DAT
database and computed as the average number killed
per year during the 1980-2000 period.
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Duration

3 months

3 months

3 months

6 months

6 months

6 months

Severity

90% of median precipitation 1979-2001 (-10%)

75% of median precipitation 1979-2001 (-25%)

50% of median precipitation 1979-2001 (-50%)

90% of median precipitation 1979-2001 (-10%)

75% of median precipitation 1979-2001 (-25%)

50% of median precipitation 1979-2001 (-50%)

TABLE T.7 DEFINITION OF DROUGHT

EQUATION 8 ESTIMATE OF KILLED

EQ8 K = C • (PhExp)α • V1
α1 • V2

α2 ... • Vp
αp

Where 
K is the number of persons killed by a certain type of hazard
C is the multiplicative constant.
PhExp is the physical exposure: population living in exposed areas

multiplied by the frequency of occurrence of the hazard
Vi are the socio-economic parameters
α i is the exponent of Vi , which can be negative (for ratio)

EQUATION 9 LOGARITHM PROPERTIES

EQ9 ln(K) = ln(C) + α(PhExp) + α1 ln(V1 ) + α2 ln(V2 ) + ... αp ln(Vp )



Filtering the data
The statistical models for each disaster type were based
on subsets of countries, from which were excluded:
■ Countries with no physical exposure or any victims

reported (zero or null values).
■ Countries where it was not possible to confirm data

on physical exposure (e.g. the case of Kazakhstan
for floods) or socio-economic factors.

■ Countries with low physical exposure (less than 2
percent of the total population) because socio-
economic variables were collected at a national
scale. The exposed population needs to be of 
some significance at a national level to reflect a
relationship in the model.

■ Countries without all the selected socio-economic
variables.

■ Eccentric values, when exceptional events or other
factors would clearly show abnormal levels of victims,
such as Hurricane Mitch in Nicaragua and Honduras
or droughts in Sudan and Mozambique.

Transformation of socio-economic variables
For statistical analysis the socio-economic variables
being tested had to be converted into 21-year averages
and then transformed into a logarithm value. For some
of the variables, the logarithm was computed directly.
For those expressed as a percentage, a transformation was
applied in order that all variables would range between
-∞ and +∞. For others, no logarithmic transformation
was needed. For instance, ‘population growth’ already
behaves in a cumulative way and could be put directly
into the calculation.

Choice between variables
One important condition when computing regressions
is that the variables included in the model should be
independent, i.e. the correlation between two sets of
variables is low. This is clearly not the case with HDI
and GDPcap purchasing power parity (further referred
to as GDPcap), which are highly correlated. GDPcap
was used more than HDI because HDI was not available
for several countries. In order to keep the sample as 

complete as possible, a choice between available variables
was made choosing variable datasets that were as
independent from each other as possible. This choice
was performed by the use of both matrix-plot and 
correlation-matrix (using low correlation, hence low
p-value, as the selection criteria).

The stepwise approach
For each type of hazard, numerous stepwise (back and
forth steps) linear regressions were performed in order
to identify significant socio-economic variables. The
validation of each regression result was carried out using
R2, variance analysis and detailed residual analysis.

Once the model was derived, the link between modelled
estimated-killed and number-of-killed observed from
EM-DAT was provided by both graph plots and 
computation of Pearson correlation coefficients.

If one can intuitively understand that physical exposure
is positively related with the number of victims, and
that GDPcap is inversely related with the number of
victims (the lower the GDP, the higher the number of
victims), this is less obvious for other variables such as
the percentage of arable land. This method multiple
logarithmic regression allows the estimation of the αi
coefficients. Their signs provided information to show
if the variables were in a numerator or denominator
position and hence the positive or inverse relationship
between the variable and modelled deaths.

This model allowed the identification of parameters leading
to higher/lower risk, but should not be used as a predictive
model. Small differences in the logarithm scale can induce
large ones in the modelled number of deaths.

The results following this method were surprisingly high
and relevant, especially considering the independence
of the data sources and the coarse resolution of the
data at the global scale.

T.5.3 Mapping Risk
A judgement was made between the different risk
indicators (i.e. killed, killed per million inhabitant,
killed per population exposed).

T.5.4 Earthquake

Statistical model
The multiple regression was based on 48 countries.
The best-fit regression line followed Equation 11 (see
following page).
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EQ10 Vi ’ =
Vi——––

(1 – Vi )
Where 
Vi’ is the transformed variable (ranging from -∞ to +∞)
Vi is the socio-economic variable (ranging from 0 to 1)   

EQUATION 10 TRANSFORMATION FOR 
VARIABLES RANGING BETWEEN 0 AND 1



The variables retained by the regression include physical
exposure and the rate of urban growth. Explained 
variance is smaller than for flood or cyclones (R2=0.544),
however considering the small length of time taken into 

account (21 years as compared to the long return period of
earthquakes), the analysis delineates a reasonably good
relation. Physical exposure is of similar relevance than for
previous cases, relevant p-value. Urban growth is also
highly negatively correlated with GDP and HDI. Thus, a
similar correlation (but slightly inferior) could have been
derived using HDI or GDP.

T.5.5 Tropical cyclone

Statistical model 
The multiple regression was based on 32 countries
and the best-fit regression line followed Equation 12.

The plot delineates a clear linear distribution of the
data as seen in Figure T.7.

The parameters highlighted show that physical exposure,
HDI and the percentage of arable land were associated
with cyclone hazards.

The GDPcap is strongly correlated with the HDI or 
negatively with the percentage of urban growth. In most
of the cases, the variable GDPcap could be replaced by
HDI as explained previously. However, these results show
with confidence that poor countries and countries with 
low human development index rank are more vulnerable
to cyclones.

With a considerable part of variance explained by the
regression (R2 = 0.863) and a high degree of confidence in
the selected variables (very small p-value) over a sample of
32 countries, the model achieved is solid.

In the model, the consequences of Hurricane Mitch could
easily be depicted. Indeed, Honduras and Nicaragua were
far off the regression line (significantly underestimated).
This is explained by the high impact of Mitch compared to
other hurricanes. The extreme values given by this event led
to Honduras and Nicaragua being rejected from the model.
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EQUATION 11 MULTIPLE LOGARITHMIC 
REGRESSION MODEL FOR EARTHQUAKES

EQ11 ln(K) = 1.26ln(PhExp) + 12.27 • Ug – 16.22

Where 
K is the number of killed from earthquakes
PhExp is the physical exposure to earthquakes
Ug is the rate of urban growth (rates do not request 

transformation as it is already a cumulative value) 

––––––––––––––––––––––––
h. In broad terms, a p-value smaller than 0.05 shows the significance of the selected indicator, however this should not be used blindly.

48 countries

Intercept

PhExp

Ug

R= 0.75, R2= 0.56, adjusted R2= 0.54

B

–16.22

1.26

12.27

p-valueh

0.000000

0.000000

0.047686

TABLE T.8 EXPONENT AND P-VALUE FOR 
EARTHQUAKE MULTIPLE REGRESSION

Source: The EM-DAT OFDA/CRED International Disaster Database and UNEP/GRID-Geneva

FIGURE T.6 SCATTER PLOT OF THE 
OBSERVED NUMBER OF PEOPLE KILLED BY EARTHQUAKES
(EM-DAT) AND THE MODEL PREDICTIONS
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EQUATION 12 MULTIPLE LOGARITHMIC REGRESSION MODEL FOR TROPICAL CYCLONE

___ ____
EQ12 ln(K) = 0.63ln(PhExp) + 0.66ln(Pal ) – 2.03ln(HDI) – 15.86

K is the number of killed from cyclones

PhExp is the physical exposure to cyclones

___
Pal is the transformed value of percentage of arable land___
HDI is the transformed value of the Human Development Index

Where 



T.5.6 Flood

Statistical model
The multiple regression was based on 90 countries.
The best-fit regression line followed Equation 13.

Due to space constraints, only a selection of countries
was included in the above scatter plot. A comprehensive
list of countries affected by floods is provided below:

Albania, Algeria, Angola, Argentina, Australia, Austria,
Azerbaijan, Bangladesh, Benin, Bhutan, Bolivia,
Botswana, Brazil, Burkina Faso, Burundi, Cambodia,

Cameroon, Canada, Chad, Chile, China, Colombia,
Costa Rica, Côte d’Ivoire, Czech Republic, Dominican
Republic, Ecuador, Egypt, El Salvador, Ethiopia, Fiji,
France, Gambia, Georgia, Germany, Ghana, Greece,
Guatemala, Haiti, Honduras, India, Indonesia, Iran
(Islamic Republic of ), Israel, Italy, Jamaica, Japan,
Jordan, Kenya, Lao People’s Democratic Republic,
Malawi, Malaysia, Mali, Mexico, Republic of
Morocco, Mozambique, Nepal, Nicaragua, Niger,
Nigeria, Pakistan, Panama, Papua New Guinea,
Paraguay, Peru, Philippines, Poland, Portugal,
Republic of Korea, Republic of Moldova, Romania,
Russian Federation, Rwanda, Saudi Arabia, Sierra
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21 countries

Intercept

ln(PhExp)
___

ln(Pal)
___

ln(HDI)

R= 0.93, R2= 0.86, adjusted R2= 0.85

B

–15.86

0.63

0.66

–2.03

p-valuei

0.00000

0.00000

0.00013

0.00095

TABLE T.9 EXPONENT AND P-VALUE 
FOR CYCLONES MULTIPLE REGRESSION

90 countries

Intercept

ln(PhExp)

ln(GDPcap)

ln(Density)

R= 0.84, R2= 0.70, adjusted R2= 0.69

B

–5.22

0.78

–0.45

–0.15

p-valuei

0.00000

0.00000

0.00002

0.00321

TABLE T.10 EXPONENT AND P-VALUE 
FOR FLOOD INDICATORS

Source: The EM-DAT OFDA/CRED International Disaster Database and UNEP/GRID-Geneva

FIGURE T.7 SCATTER PLOT OF THE OBSERVED 
NUMBER OF PEOPLE KILLED BY TROPICAL CYCLONE 
(EM-DAT) AND THE MODEL PREDICTIONS
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Source: The EM-DAT OFDA/CRED International Disaster Database and UNEP/GRID-Geneva

FIGURE T.8 SCATTER PLOT OF THE 
OBSERVED NUMBER OF PEOPLE KILLED BY FLOOD 
(EM-DAT) AND THE MODEL PREDICTIONS
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i. In broad terms, a p-value smaller than 0.05 shows the significance of the selected indicator, however this should not be used blindly.

EQUATION 13 MULTIPLE LOGARITHMIC REGRESSION MODEL FOR FLOOD

EQ13     ln(K) = 0.78ln(PhExp) + 0.45ln(GDPcap ) – 0.15ln(D) – 5.22

GDPcap is the normalised Gross Domestic Product per capita (purchasing power parity)
D is the local population density (i.e. the population affected divided by the area affected)

K is the number of killed from floods
PhExp is the physical exposure to floods

Where 



Leone, Slovakia, South Africa, Spain, Sri Lanka,
Thailand, Tunisia, Turkey, Uganda, Ukraine, United
Kingdom of Great Britain and Northern Ireland,
United Republic of Tanzania, United States of
America, Viet Nam, Yemen and Zimbabwe.

The variables selected by the statistical analysis are physical
exposure, GDPcap and local density of population. GDPcap
being highly correlated with HDI, this later could have
been chosen as well. The GDPcap was chosen due to slightly
better correlation between the model and the observed
killed, as well as because of lower p-value. Regression

analysis supposes the introduction of non-correlated
parameters, thus preventing the use of all these variables.

The part of explained variance (R2 = 0.70) associated
with significant p-value (between 10-23 and 2·10-3) on
90 countries is confirming a solid confidence in the selection
of the variables (see Table T. 10 on the previous page).

T.5.7 Drought

Statistical model
The regression analysis was performed using the six
different exposure datasets derived from IRI drought
maps. In general, the models were based on three-
month thresholds to give better results. The dataset
based on a drought threshold set at three months, at
50 percent below the median precipitation between
1979-2001, was finally selected as the exposure data.

The multiple regression was based on 15 countries.
The best-fit regression line followed Equation 14.

Rejected countries: Swaziland and Somalia (WATTOT

value inexistent), North Korea (reported WATTOT of
100 percent is highly doubtful), Sudan and Mozambique
(eccentric values, suggesting other explanation for deaths).

The small p-values observed suggest a relevant selection of
the indicators among the list of available datasets. It is to
be noted that the high coefficient for WATTOT (–7.578)
denotes a strong sensitivity to the quality of the data.
This implies that even a change of 1 percent in total access
to water would induce significant change in the results.
This would be especially so for small values where small
changes have bigger influence in proportion.

The model could not be used for predictive purposes.
Inconsistencies were found in the data that require 
further verification.
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Predictor

Constant 

PhExp3_5

WATTOT
(1n)

S = 1,345, R-Sq = 0.812, R-Sq(adj) = 0.78

Coef

14,390

1.2622

-7,578

SE Coef

3,411

0.2268

1,077

T

4.22

5.57

-7.03

p-valuej

0.001

0.000

0.000

TABLE T.11 EXPONENT AND P-VALUE FOR 
DROUGHT MULTIPLE REGRESSION

Source: The EM-DAT OFDA/CRED International Disaster Database and UNEP/GRID-Geneva

FIGURE T.9 SCATTER PLOT OF THE 
OBSERVED NUMBER OF PEOPLE KILLED BY DROUGHT 
(EM-DAT) AND THE MODEL PREDICTIONS
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j. In broad terms, a p-value smaller than 0.05 shows the significance of the selected indicator, however this should not be used blindly.

EQUATION 14 MULTIPLE LOGARITHMIC REGRESSION MODEL FOR DROUGHT

EQ14     ln(K) = 1.26ln(PhExp3_50) – 7.58ln(WATTOT ) + 14.4

Where 
K is the number of killed from droughts
PhExp3_50 is the number of people exposed per year to droughts. A drought is defined as a period of at least three months less or equal to 

50 percent of the average precipitation level (IRI, CIESIN/IFPRI/WRI)
WATTOT is the percentage of population with access to improved water supply (WHO/UNICEF)



The variables associated with disaster risk through statistical
analysis were physical exposure and the percentage of
population with access to improved water supply. A strong
correlation was established (R2 = 0.81) indicating the solidity
of the method as well as the reliability of these datasets for
such a scale of analysis.

Figure T.9 shows the distribution (on a logarithmic scale)
of expected deaths from drought and as predicted from the
model. A clear regression can be drawn. It should be noted
that if Ethiopia were to be excluded, the correlation would
fall to (R2 = 0.6). However, the offset and the slope of the
regression line do not change significantly, reinforcing the
robustness of the model.

As far as 1.26 is close to 1, the number of killed people
grows proportionally to physical exposure. Also, the number
of killed people decreases as a percentage of population
when improved water supply grows. This latter variable
should be seen as an indicator of the level of development of
the country, as it was correlated to other development variables,
such as the under-five mortality rate (Pearson correlation
r = –0.64) and Human Development Index (r = 0.65).

Some countries with large physical exposure did not report
any deaths to drought (United States of America, Viet
Nam, Nigeria, Mexico, Bangladesh, Iran, Iraq, Colombia,
Thailand, Sri Lanka, Jordan, Ecuador). This could be for
a number of reasons. Either the vulnerability is null or
extremely low, e.g. USA and Australia, or the number of
reported killed from food insecurity is placed under conflict
in EM-DAT, e.g. Iraq and Angola. For other countries,
further inquiry might be necessary.

T.6 Multiple Risk Integration

So far, the precision and quality of the data as well as
the sensitivity of the model do not allow the ranking
of countries for disaster risk.

T.6.1 Methods

How to compare countries and disasters
A multiple-hazard risk model was made by adding
expected deaths from each hazard type for every 
country. In order to reduce the number of countries
with no data that would have to be excluded from 
the model, a value of ‘no data’ for countries without
significant exposure was replaced by zero risk of deaths.

Countries were considered as not affected if the two
following conditions were met: a physical exposure
smaller than 2 percent of the national population
AND an affected population smaller than 1,000 
per year.

Some 39 countries were excluded from the analysis.
Despite this, it is known that each was exposed to
some level of hazard and 37 countries with recorded
disaster deaths were in EM-DAT. This list of countries
identifies places where improvement in data collection
is needed to allow their integration in future work.
Reasons that individual countries were excluded were:
countries marginally affected by a specific hazard,
countries affected but without data; and countries
where the distribution of risk could not be explained
by the model (for example, for drought in Sudan,
where food insecurity and famine is more an outcome
of armed conflict than of meteorological drought as
defined in the model).

Once the countries to be included in the model were
identified, a Boolean process was run to allocate one
of five statistically defined categories of multi-hazard
risk to each country. Figure T.10 illustrates the different
steps taken to incorporate values into a multiple-risk
index. Once this process had been completed, three
different products were available:

■ A table of values for the countries that include the
data for relevant hazards or countries without data
but marginally affected (210 countries).

■ A list of countries with missing data (countries with
reported deaths but without appropriate data).

■ A list of countries where the model could not be
applied (indicators do not capture the situation in
these countries, case of countries not explained by
the model, or rejected during the analysis because
the indicators are not relevant to the situation).

Multiple risk computation
Multiple risk was computed using the succession of
formulae as described in Equation 15 (see following page).

Between each addition, the whole process described in
Figure T.10 (see following page) needed to be run in order
to identify those countries where a value represented
by zero needed, either to be replaced by a value calculated
from the selected hazard model, or if not, the country was
placed in the  ‘not-relevant’ or ‘no data’ lists (see below).
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In order to examine the fit between model multi-hazard
risk and recorded deaths, data from both sources were
categorised into five country risk classes. A cluster analysis
minimising the intra-class distance and maximising

the inter-classes (K-means clustering method) was
performed. This meant that a purely statistical process
had been used to identify severities of risk from the
model and deaths as recorded by EM-DAT.
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FIGURE T.10 MULTIPLE RISK INTEGRATION

EQUATION 15 COMPUTATION OF MULTIPLE RISK BY SUMMING CALCULATED DEATHS 
AS MODELLED FOR RISK FOR CYCLONE, FLOOD, EARTHQUAKE AND DROUGHT

Where

e  is the Euler constant (=2.718…)

PhExp is the physical exposure of selected hazard

HDI   is the Human Development Index

GDPcap is the Gross Domestic Product per capita at purchasing power parity

D is the local density (density of population in the flooded area)

Ug is the Urban growth (computed over three-year period)

WATTOT is the access to safe drinking water

___                ____
EQ15 Kcyclones (PhExp0.63

cyclones • Pal 0.66 • HDI -2.03 • e -15.86)  +  Kfloods (PhExp0.78
floods • GDP -0.45

cap • D-0.15 • e -5.22)  +

Kearthquakes (PhExp1.26
earthquakes • U 12.27

g • e -16.27)  +  Kdroughts (PhExp3_501.26• WAT -7.58
TOT • e 14.4)



In order to take both risk indicators (killed and killed
per inhabitant) into account, a Principal Component
Analysis (PCA) was performed to combine the two.
Then a distinction was made between countries smaller
than 30,000 km squared and with population density
higher than 100 inhabitants per km squared.

T.6.2 Results

Modelled countries without reported deaths
The multi-hazard DRI was computed for 210 countries.
This includes 14 countries where no recorded deaths
were reported in the last two decades from EM-DAT:
Barbados, Croatia, Eritrea, Gabon, Guyana, Iceland,
Luxembourg, Namibia, Slovenia, Sweden, Syrian
Arab Republic, The former Yugoslav Republic of
Macedonia, Turkmenistan and Zambia.

No data, abnormal values and specific cases
Through the Principal Component Analysis transformation,
inferior and superior thresholds were identified. This
was performed on both observed and modelled
deaths. For 14 countries, a value was calculated in the
multi-hazard risk model even though no deaths had
been recorded by EM-DAT in the 1980-2000 period.
On the other hand, 37 countries where deaths were
recorded could not be modelled, either because of 
a lack of data or because they did not fit with the
model assumptions.These countries were: Afghanistan,
Azerbaijan, Cuba, Democratic People’s Republic of
Korea, Democratic Republic of the Congo, Djibouti,
Dominica, France, Greece, Liberia, Malaysia, Montserrat,
Myanmar, New Caledonia, Portugal, Solomon Islands,
Somalia, Spain, Sudan, Swaziland, Taiwan, Tajikistan,
Vanuatu, Yugoslavia, Antigua and Barbuda, Armenia,
Guadeloupe, Guam, Israel, Martinique, Micronesia
(Federated States of ), Netherlands Antilles, Puerto
Rico, Reunion, Saint Kitts and Nevis, Saint Lucia,
United States Virgin Islands.

Countries absent of both EM-DAT and Model
Two countries were absent from both EM-DAT and
the model: Anguilla (a dependency of the United
Kingdom) and Bosnia-Herzegovina.

EM-DAT-DRI multi-hazard risk comparison results
The results of the comparison of modelled and EM-DAT
multi-hazard deaths are presented and discussed in
Chapter 2. For more information, including country
specific variables, researchers are encouraged to visit
the Report website.

T.7 Technical Conclusions 
and Recommendations

T.7.1 The DRI – A work in progress

The DRI is a statistically robust tool
The results generated by the DRI method were 
statistically robust with a high level of confidence.
This is especially the case considering the independence
of the data sources and the coarse resolution of the
data available at the global scale. The statistically
strong links — both between observed and modeled
deaths and between socio-economic variables associated
with human vulnerability and levels of risk — that
were found in the DRI study are not often found in
similar studies that analyse geophysical datasets and
socio-economic data. The model has succeeded in
opening the great potential for future national level
disaster risk assessments. It provides the first, solid
statistical base for understanding and comparing
countries’ disaster risk and human vulnerability.

The DRI is not a predictive model
This is partly a function of a lack of precision in the
available data. But it also shows the influence of local
context. The risk maps provided in this research allow
a comparison of relative risk between countries, but
cannot be used to depict actual risk for any one country.
Sub-national risk analysis would be required to inform
development and land-use planning at the national level.

How to link extreme and everyday risk?
Extraordinary events by their very nature do not 
follow the normal trend. Hurricane Mitch in 1998,
the rains causing landslides in Venezuela in 1999 or
the 1988 earthquake in Armenia were off the regression
line. This is due to the abnormal intensity of such
events. These events are (hopefully) too rare to be 
usefully included in a two-decade period of study.
Incorporating this level of intensity can only be done
on an event-per-event approach.

T.7.2 Ways forward

Socio-economic variables
Results showed that global datasets can still be improved
both in terms of precision and completeness. However,
they already allow the comparison of countries. Other
indicators — such as a corruption, armed conflict or
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political events — would be interesting to test in the
model in the future.

Floods
Geophysical data can be improved. The watersheds
used to estimate flood physical exposure were based
on a 1 km cell resolution for elevation. A new global
dataset on elevation from radar measures taken from a
National Aeronautics and Space Administration
(NASA) space shuttle is expected in 2004. It 
consists of a 30m resolution grid for the USA and
90m resolution for global coverage. This dataset will
allow the refining of estimated areas exposed to flood
risk. This advance will be especially welcome for the
central Asian countries, where the quality of globally
accessible available data was low.

Earthquakes
If information on soil (i.e. Quaternary rocks) and fault
orientations can be generated, it would be possible to
compute intensity using a modified Mercali scale,
with much higher precision for delineating the affected
area. Alternatively, a method for deriving frequency
based on the Global Seismic Hazard Map from the
GSHAP13 could be used.

Cyclones
Once data from the North Indian Ocean is available,
a vector approach should be applied using the
PreView Global Cyclone Asymmetric Windspeed
Profile model developed by UNEP/GRID-Geneva.
This method computes areas affected, based on central
pressure and sustainable winds.

Drought
Other precipitation datasets with higher spatial 
resolution could be usefully tested. The use of geo-
climatic zones might be useful in order to take into
account the usual climate of a specific area. Indeed, a
drop of 50 percent precipitation might not have the
same consequence on a humid climate as on a semi-
arid area. The use ofthe Global Humidity Index (from
UNEP/GRID UEA/CRU) might help in differentiating
these zones. Measuring food insecurity (by using
information on conflict and political status) would 
be also a significant improvement as compared to
meteorological drought. Alternatively, drought could
be measured in terms of crop failure through use of
satellite imagery. This will be closer to drought as 
it impacts on food security.

The case of small islands and archipelagos
In some cases, small islands and archipelagos were 
too small to be considered by the GIS-automated
algorithms. This was typically the case for population
data. The raster information layer for population
could not be used to extract the population of small
islands. For single island countries, the problem might
be overcome by using the population of the country,
but for others this was not possible. Indeed, when
superimposing cyclone tracks on top of archipelagos,
the population is needed for each island. A manual
correction is needed, but could not be performed due
to the time-frame of the study. The compilation of
socio-economic variables was also not complete for
the islands. This might be improved by collaborating
with agencies such as the South Pacific Applied
Geoscience Commission (SOPAC) and Economic
Commission for Latin America and the Caribbean
(ECLAC) as both agencies are currently working on
indicators for island vulnerability.

For all these reasons, the case of small island states and
archipelagos would need a separate study.

Death as an indicator for risk
To what extend are deaths proportional to the 
significance of total losses, including losses of 
livelihood? In the case of earthquakes, where no early
warning exists, this might be a good proxy. But it will
depend on whether the earthquake epicentre is located
in a rural or urban area. For tropical cyclone and flood,
deaths are usually much smaller in relation to losses 
of houses, infrastructures and crops. In drought, the
relationship is even more exaggerated. A much higher
number of people are affected through the slow 
erosion of rural livelihoods and the possible influence
of intervening factors, such as armed conflict, economic
or political crisis, or epidemic disease such as HIV/
AIDS. This makes separating the impact of drought
from other factors a big challenge.

The ideal would be to have access to records of livelihood
losses in order to calibrate the severity of one hazard
type as compared to another (while considering the
magnitude of a hazard). Other approaches for obtaining
a structured assessment of comparative risk by country
could include an assessment on the comparative severity
of hazard using local and expert knowledge, or using
relief and aid organisation budget data as a proxy 
for risk severity.
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Extending to other hazards
Volcanic eruptions. The variability of volcanic hazards
was too complex to be entered into a general model.
Volcanic hazard ranges from lahars linked with 
precipitation level, seismicity, topography and soils
characteristics, to tephra falls influenced by the prevailing
wind direction and strength, and phreatomagmatic
eruption. Despite this complexity, much data is 
available for volcanic hazard and each active volcano is
well described. Data needed for a global assessment of
volcanic risk probably exists. But a finer resolution for
elevation is needed. It would be necessary to include
data on the shape and relief of volcanoes, computing
slopes and hazard from lahars. Remote sensing 
analysis for local assessment of danger and population
distribution would also be required.

Tsunamis and landslides. Some countries are not well
represented by the model because they are affected by
hazards that are not of global significance. This is 
the case of Papua New Guinea and Ecuador, both
affected by tsunamis, respectively 67.8 percent and
14.3 percent of national deaths. Landslides also cause

significant losses in Indonesia (13 percent), Peru (33
percent) and Ecuador (10 percent) of recorded disaster-
related deaths. As a result, the multi-hazard DRI is
under evaluated for these countries.
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